在平面直角坐标系中,抛物线 y = x 2 ﹣ 2 x ﹣ 3 与 x 轴相交于点 A , B (点 A 在点 B 的左侧),与 y 轴相交于点 C ,连接 A C .
(1)求点 B ,点 C 的坐标;
(2)如图1,点 E ( m , 0 ) 在线段 O B 上(点 E 不与点 B 重合),点 F 在 y 轴负半轴上, O E = O F ,连接 A F , B F , E F ,设 △ A C F 的面积为 S 1 , △ B E F 的面积为 S 2 , S = S 1 + S 2 ,当 S 取最大值时,求 m 的值;
(3)如图2,抛物线的顶点为 D ,连接 C D , B C ,点 P 在第一象限的抛物线上, P D 与 B C 相交于点 Q ,是否存在点 P ,使 ∠ P Q C = ∠ A C D ,若存在,请求出点P的坐标;若不存在,请说明理由.
试题篮