在平面直角坐标系中, O 为原点, ΔOAB 是等腰直角三角形, ∠ OBA = 90 ° , BO = BA ,顶点 A ( 4 , 0 ) ,点 B 在第一象限,矩形 OCDE 的顶点 E ( - 7 2 , 0 ) ,点 C 在 y 轴的正半轴上,点 D 在第二象限,射线 DC 经过点 B .
(Ⅰ)如图①,求点 B 的坐标;
(Ⅱ)将矩形 OCDE 沿 x 轴向右平移,得到矩形 O ' C ' D ' E ' ,点 O , C , D , E 的对应点分别为 O ' , C ' , D ' , E ' .设 OO ' = t ,矩形 O ' C ' D ' E ' 与 ΔOAB 重叠部分的面积为 S .
①如图②,当点 E ' 在 x 轴正半轴上,且矩形 O ' C ' D ' E ' 与 ΔOAB 重叠部分为四边形时, D ' E ' 与 OB 相交于点 F ,试用含有 t 的式子表示 S ,并直接写出 t 的取值范围;
②当 5 2 ⩽ t ⩽ 9 2 时,求 S 的取值范围(直接写出结果即可).
试题篮