如图,在平面直角坐标系中,抛物线 y = − x 2 + 4 x 经过坐标原点,与 x 轴正半轴交于点 A ,点 M ( m , n ) 是抛物线上一动点.
(1)如图1,当 m > 0 , n > 0 ,且 n = 3 m 时,
①求点 M 的坐标;
②若点 B ( 15 4 , y ) 在该抛物线上,连接 OM , BM , C 是线段 BM 上一动点(点 C 与点 M , B 不重合),过点 C 作 CD / / MO ,交 x 轴于点 D ,线段 OD 与 MC 是否相等?请说明理由;
(2)如图2,该抛物线的对称轴交 x 轴于点 K ,点 E ( x , 7 3 ) 在对称轴上,当 m > 2 , n > 0 ,且直线 EM 交 x 轴的负半轴于点 F 时,过点 A 作 x 轴的垂线,交直线 EM 于点 N , G 为 y 轴上一点,点 G 的坐标为 ( 0 , 18 5 ) ,连接 GF .若 EF + NF = 2 MF ,求证:射线 FE 平分 ∠ AFG .
试题篮