如图,直线 y = - 3 2 x + 6 与 x 轴交于点 B ,与 y 轴交于点 A ,点 P 为线段 AB 的中点,点 Q 是线段 OA 上一动点(不与点 O 、 A 重合).
(1)请直接写出点 A 、点 B 、点 P 的坐标;
(2)连接 PQ ,在第一象限内将 ΔOPQ 沿 PQ 翻折得到 ΔEPQ ,点 O 的对应点为点 E .若 ∠ OQE = 90 ° ,求线段 AQ 的长;
(3)在(2)的条件下,设抛物线 y = a x 2 - 2 a 2 x + a 3 + a + 1 ( a ≠ 0 ) 的顶点为点 C .
①若点 C 在 ΔPQE 内部(不包括边),求 a 的取值范围;
②在平面直角坐标系内是否存在点 C ,使 | CQ - CE | 最大?若存在,请直接写出点 C 的坐标;若不存在,请说明理由.
试题篮