如图,已知抛物线 y = a x 2 + bx + 5 ( a ≠ 0 ) 与 x 轴交于点 A ( - 5 , 0 ) ,点 B ( 1 , 0 ) (点 A 在点 B 的左边),与 y 轴交于点 C ,点 D 为抛物线的顶点,连接 BD .直线 y = - 1 2 x - 5 2 经过点 A ,且与 y 轴交于点 E .
(1)求抛物线的解析式;
(2)点 N 是抛物线上的一点,当 ΔBDN 是以 DN 为腰的等腰三角形时,求点 N 的坐标;
(3)点 F 为线段 AE 上的一点,点 G 为线段 OA 上的一点,连接 FG ,并延长 FG 与线段 BD 交于点 H (点 H 在第一象限),当 ∠ EFG = 3 ∠ BAE 且 HG = 2 FG 时,求出点 F 的坐标.
试题篮