如图1,抛物线 y = a x 2 + bx + 2 与 x 轴交于 A , B 两点,与 y 轴交于点 C , AB = 4 ,矩形 OBDC 的边 CD = 1 ,延长 DC 交抛物线于点 E .
(1)求抛物线的解析式;
(2)如图2,点 P 是直线 EO 上方抛物线上的一个动点,过点 P 作 y 轴的平行线交直线 EO 于点 G ,作 PH ⊥ EO ,垂足为 H .设 PH 的长为 l ,点 P 的横坐标为 m ,求 l 与 m 的函数关系式(不必写出 m 的取值范围),并求出 l 的最大值;
(3)如果点 N 是抛物线对称轴上的一点,抛物线上是否存在点 M ,使得以 M , A , C , N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 M 的坐标;若不存在,请说明理由.
试题篮