已知:△ ABC内接于⊙ O, D是 BC ̂ 上一点, OD ⊥ BC ,垂足为 H.
(1)如图1,当圆心 O在 AB边上时,求证: AC = 2 OH ;
(2)如图2,当圆心 O在△ ABC外部时,连接 AD、 CD, AD与 BC交于点 P,求证: ∠ ACD = ∠ APB ;
(3)在(2)的条件下,如图3,连接 BD, E为⊙ O上一点,连接 DE交 BC于点 Q、交 AB于点 N,连接 OE, BF为⊙ O的弦, BF ⊥ OE 于点 R交 DE于点 G,若 ∠ ACD ﹣ ∠ ABD = 2 ∠ BDN , AC = 5 5 , BN = 3 5 , tan ∠ ABC = 1 2 ,求 BF的长.
试题篮