如图,在ΔABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接AD,过点D作DM⊥AC,垂足为M,AB、MD的延长线交于点N.
(1)求证:MN是⊙O的切线;
(2)求证:DN2=BN·(BN+AC);
(3)若BC=6,cosC=35,求DN的长.
证明:(1)如图,连接OD,
∵AB是直径,
∴∠ADB=90°,
又∵AB=AC,
∴BD=CD,∠BAD=∠CAD,
∵AO=BO,BD=CD,
∴OD//AC,
∵DM⊥AC,
∴OD⊥MN,
又∵OD是半径,
∴MN是⊙O的切线;
(2)∵AB=AC,
∴∠ABC=∠ACB,
∵∠ABC+∠BAD=90°,∠ACB+∠CDM=90°,
∴∠BAD=∠CDM,
∵∠BDN=∠CDM,
∴∠BAD=∠BDN,
又∵∠N=∠N,
∴ΔBDN∽ΔDAN,
∴BNDN=DNAN,
∴DN2=BN·AN=BN·(BN+AB)=BN·(BN+AC);
(3)∵BC=6,BD=CD,
∴BD=CD=3,
∵cosC=35=CDAC,
∴AC=5,
∴AB=5,
∴AD=AB2-BD2=25-9=4,
∵ΔBDN∽ΔDAN,
∴BNDN=DNAN=BDAD=34,
∴BN=34DN,DN=34AN,
∴BN=34(34AN)=916AN,
∵BN+AB=AN,
∴916AN+5=AN
∴AN=807,
∴DN=34AN=607.
试题篮