余姚市肖东中学
  首页 / 初中数学 / 试卷选题
  • 编号:124709
  • 题量:8
  • 年级:九年级
  • 类型:练习检测
  • 地区:全国
  • 更新:2021-12-10
  • 浏览:2043
专题45 动态几何之和差问题(预测题)
1、

如图,已知△ABC为等腰直角三角形,点D为边BC上的一动点(点D不与B、C重合),以AD为边作正方形ADEF(A、D、E、F按逆时针排列),连接CF。求证: CF+CD=AC。

  • 题型:14
  • 难度:中等
  • 浏览:1061
2、

如图,等腰直角梯形ABCD中,∠ADC=∠BCD=90°,BC=CD=4,P为边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F。证明:DE2+BF2=16。

  • 题型:14
  • 难度:中等
  • 浏览:504
3、

如图1,已知直线y=kx与抛物线交于点A(3,6).

(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

  • 题型:14
  • 难度:中等
  • 浏览:689
4、

如图,AB是⊙O的一条弦,点C是⊙O优弧AB上一动点,且∠ACB=45°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为

  • 题型:2
  • 难度:中等
  • 浏览:795
5、

如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为

(1)求直线l2的解析式;
(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;
(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.

  • 题型:14
  • 难度:中等
  • 浏览:1755
登录以后就可以查看全部内容啦